RSNA Press Release

Combining AI Models Improves Breast Cancer Risk Assessment

Released: August 29, 2023

OAK BROOK, Ill. — Combining artificial intelligence (AI) systems for short- and long-term breast cancer risk results in an improved cancer risk assessment, according to a study published in *Radiology*, a journal of the Radiological Society of North America (RSNA).

Andreas D. Lauritzen, Ph.D.

Most breast cancer screening programs take a one-size-fits-all approach and follow the same protocols when it comes to determining a woman’s lifetime risk of developing breast cancer. Using mammography-based deep learning models may improve the accuracy of breast cancer risk assessment and can also lead to earlier diagnoses.

“About 1 in 10 women develop breast cancer throughout their lifetime,” said study author Andreas D. Lauritzen, Ph.D., from the Department of Computer Science at the University of Copenhagen in Denmark. “In recent years, AI has been studied for the purpose of diagnosing breast cancer earlier by automatically detecting breast cancers in mammograms and measuring the risk of future breast cancer.”

At A Glance

- Combining diagnostic and texture-based AI models results in improved interval and long-term breast cancer risk assessment.
- The combined AI model was tested on more than 119,000 women in a breast cancer screening program.
- The model also enabled identification of women at high risk for breast cancer.
A variety of AI tools exist to aid in detecting cancer risk. Diagnostic AI models are trained
to detect suspicious lesions on mammograms and are well suited to estimate short-term
breast cancer risk.

More suitable for long-term breast cancer risk are texture AI models, capable of identifying
breast density. Women with dense breast tissue are at higher risk of developing breast
cancer and may benefit from supplemental MRI screening.

“It is important to enable reliable and robust assessment of breast cancer risk using
information from the screening mammogram,” Dr. Lauritzen said.

For this study, Dr. Lauritzen and his research team sought to identify whether a
commercially available diagnostic AI tool and an AI texture model, trained separately and
then subsequently combined, may improve breast cancer risk assessment.

The researchers used the diagnostic AI tool Transpara and a texture model that was
developed by the researchers. A Dutch training set of over 39,000 exams was used to train
the models. The short- and long-term risk models were combined using a three-layer neural
network.

The combined AI model was tested on a study group of more than 119,000 women who
were included in a breast cancer screening program in the Capital Region of Denmark
between November 2012 and December 2015. The average age of the women was 59 years.

Compared to the diagnostic and texture models alone, the combined AI model showed an
overall improved risk assessment for both interval and long-term cancer detection. Interval
cancers are those that are found between routine screenings.

The model also enabled identification of women at high risk for breast cancer. Women
identified by the combined model as having the 10% highest combined risk accounted for
44.1% of interval cancers and 33.7% of long-term cancers.

Using AI to identify a women’s breast cancer risk from a single mammogram will not only
result in earlier cancer detection but can also improve the strain on the health care system
due to the worldwide shortage of specialized breast radiologists.

“Current state-of-the-art clinical risk models require multiple tests such as blood work,
genetic testing, mammogram and filling out extensive questionnaires, all of which would
substantially increase the workload in the screening clinic,” Dr. Lauritzen said. “Using our
model, risk can be assessed with the same performance as the clinical risk models but
within seconds from screening and without introducing overhead in the clinic.”

#

“Assessing Breast Cancer Risk by Combining AI for Lesion Detection and Mammographic Texture.”
Collaborating with Dr. Lauritzen were My C. von Euler-Chelpin, Ph.D., Elsebeth Lynge, Ph.D., Ilse Vejborg,
Ph.D., Mads Nielsen, Ph.D., Nico Karssemeijer, Ph.D., and Martin Lillholm, Ph.D.

In 2023, Radiology is celebrating its 100th anniversary with 12 centennial issues, highlighting Radiology’s
legacy of publishing exceptional and practical science to improve patient care.

Radiology is edited by Linda Moy, M.D., New York University, New York, N.Y., and owned and published by
the Radiological Society of North America, Inc. (https://pubs.rsna.org/journal/radiology)