



# Higher Weight and Body Mass Index Are Associated with Poor Brain Health in U.S. Children

## PURPOSE

We aimed to investigate the relationship of pre-adolescents' weight and Body Mass Index (BMI) with microstructural, morphological, and functional brain magnetic resonance imaging (MRI) metrics.

## METHODS AND MATERIALS

We evaluated baseline information of the Adolescent Brain Cognitive Development (ABCD) study that included 11,878 children aged 9-10 years from 21 centers across the U.S. to represent the national sociodemographic diversity. Inclusion required complete anthropometric and MRI data and absence of neurodevelopmental/psychiatric diseases or traumatic brain injury. T1- and T2-weighted structural MRI, diffusion tensor imaging, resting-state fMRI, and Restriction Spectrum Imaging were quantified in a region-of-interest (ROI) based approach. Separate generalized linear models determined the association of weight and BMI-z-scores with different imaging metrics after correction for age, gender, race/ethnicity, handedness, and parental education (as a surrogate for socioeconomic status). We analyzed the average fractional anisotropy (FA), mean (MD), axial (AD) and radial diffusivity (RD), and neurite density (ND) of 35 white matter (WM) tracts; cortical thickness and surface of 68 regions; and functional connectivity of 91 pre-defined network correlations.

### RESULTS

5169 children (51.9% females) were included. According to the BMI-z-scores, the overweight and obesity rate were 21.0% and 17.6%, respectively. Higher weight and BMI-z-scores were associated with lower FA values in 16 and 25 tracts, higher FA values in 1 and no tracts, lower AD values in 23 and 30 tracts, higher RD values in 5 and 10 tracts, lower RD values in 3 and no tracts, lower ND values in 11 and 13 tracts, and higher ND values in 5 and 1 tracts, respectively. For both weight and BMI-z-scores, FA reductions were most pronounced in the corpus callosum (adjusted p < 0.0000001), fornix (adjusted p < 0.000001), and (parietal and temporal) superior longitudinal fasciculus (adjusted p < 0.001). Within all of these tracts, we observed higher RD and lower AD values which were significant for most of these ROIs. With increased weight and BMI-z-scores, and significant disruptions in 37 and 31 inter- and intra-network correlations, respectively.

### CONCLUSIONS

Higher weight in childhood is associated with worse brain white matter microstructural integrity, reduced cortical grey matter thickness, and decreased functional connectivity.

## CLINICAL RELEVANCE/APPLICATIONS

Our findings highlight the neurodevelopmental implications of pre-adolescents' obesity and overweight and point to the need for targeting brain health indicators early on during childhood.